首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115363篇
  免费   11588篇
  国内免费   7381篇
电工技术   6683篇
技术理论   5篇
综合类   12748篇
化学工业   14859篇
金属工艺   7961篇
机械仪表   7901篇
建筑科学   21023篇
矿业工程   4816篇
能源动力   3090篇
轻工业   5771篇
水利工程   3449篇
石油天然气   7103篇
武器工业   1379篇
无线电   7627篇
一般工业技术   12188篇
冶金工业   4276篇
原子能技术   830篇
自动化技术   12623篇
  2024年   246篇
  2023年   1537篇
  2022年   2940篇
  2021年   3401篇
  2020年   3505篇
  2019年   2887篇
  2018年   2705篇
  2017年   3466篇
  2016年   3732篇
  2015年   4003篇
  2014年   6976篇
  2013年   6192篇
  2012年   8002篇
  2011年   8808篇
  2010年   6867篇
  2009年   7382篇
  2008年   6753篇
  2007年   8127篇
  2006年   7427篇
  2005年   6418篇
  2004年   5300篇
  2003年   4769篇
  2002年   4000篇
  2001年   3297篇
  2000年   2831篇
  1999年   2310篇
  1998年   1828篇
  1997年   1584篇
  1996年   1248篇
  1995年   1133篇
  1994年   1038篇
  1993年   668篇
  1992年   636篇
  1991年   513篇
  1990年   413篇
  1989年   289篇
  1988年   218篇
  1987年   121篇
  1986年   92篇
  1985年   89篇
  1984年   93篇
  1983年   76篇
  1982年   86篇
  1981年   45篇
  1980年   83篇
  1979年   37篇
  1978年   25篇
  1977年   17篇
  1975年   12篇
  1959年   15篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
71.
Energy storage capacitors with high recoverable energy density and efficiency are greatly desired in pulse power system. In this study, the energy density and efficiency were enhanced in Mn-modified (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics via a conventional solid-state reaction process. The improvement was attributed to the change in the antiferroelectric-to-ferroelectric phase transition electric field (EF) and the ferroelectric-to-antiferroelectric phase transition electric field (EA) with a small Mn addition. Mn ions as acceptors, which gave rise to the structure variation, significantly influenced the microstructures, dielectric properties and energy storage performance of the antiferroelectric ceramics. A maximum recoverable energy density of 2.64 J/cm3 with an efficiency of 73% was achieved when x = 0.005, which was 40% higher than that (1.84 J/cm3, 68%) of the pure ceramic counterparts. The results demonstrate that the acceptor modification is an effective way to improve the energy storage density and efficiency of antiferroelectric ceramics by inducing a structure variation and the (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3-xMn2O3 antiferroelectric ceramics are a promising energy storage material with high-power density.  相似文献   
72.
This paper is a generalization of the recently developed techniques of initial excitation (IE)–based adaptive control with an introduction to the definition of semi‐initial excitation (semi‐IE), a still more relaxed notion than IE. Classical adaptive controllers typically ensure Lyapunov stability of the extended error dynamics (tracking error + parameter estimation error) and asymptotic tracking, while requiring a stringent condition of persistence of excitation (PE) for parameter convergence. Of late, the authors have proposed a new adaptive control architecture, which guarantees parameter convergence under the online‐verifiable IE condition leading to exponential stability of the extended error dynamics. In earlier works, it has been established that the IE condition is significantly milder than the classical PE condition. The current work further slackens the excitation condition by proposing the concept of semi‐IE. The proposed adaptive controller is proved to ensure convergence of the parameter estimation error to a lower‐dimensional manifold under the weaker semi‐IE condition, while the stronger condition of IE guarantees convergence of the parameter estimation error to zero. The designed algorithm is shown to improve transient response of tracking error sufficiently in contrast to conventional adaptive controllers.  相似文献   
73.
For an effective optimization of pulp thermoforming and of the moulded pulp products manufactured by this process, a full understanding of the process physics combined with full knowledge of the pressing equipment is necessary. For this reason, in this Addendum, we clarify how the process parameters “Holding time,” “Vacuum time,” “Cycle time,” and “Temperature” were interpreted and subsequently defined for the analysis of the process and product‐related outputs of the thermoforming experiments.  相似文献   
74.
This paper provides a modified model reference adaptive control (MRAC) scheme to achieve better transient control performance for systems with unknown unmatched dynamics, where an adaptive law with guaranteed convergence is introduced. We first revisit the standard MRAC system and analyze the tracking error bound by using L2‐norm and Cauchy‐Schwartz inequality. Based on this analysis, we suggest a feasible way to compensate the undesired transient dynamics induced by the gradient descent–based adaptive laws subject to sluggish convergence or even parameter drift. Then, a modified adaptive law with an alternative leakage term containing the parameter estimation error is developed. With this adaptive law, the convergence of both the estimation error and tracking error can be proved simultaneously. This enhanced convergence property can contribute to deriving smoother control signal and improved control response. Moreover, this paper provides a simple and numerically feasible approach to online verify the well‐known persistent excitation condition by testing the positive definiteness of an introduced auxiliary matrix. Comparative simulations based on a benchmark 3‐DOF helicopter model are given to validate the effectiveness of the proposed MRAC approach and show the improved performance over several other MRAC schemes.  相似文献   
75.
To design inexpensive carbon catalysts and enhance their oxygen reduction reaction (ORR) activity is critical for developing efficient energy-conversion systems. In this work, a novel Fe-N-C hybrid electrocatalyst with carbon nanolayers-encapsulated Fe3O4 nanoparticles is synthesized successfully by utilizing the molecular-level confinement of graphitic C3N4 structures via hemin biomaterial. Benefiting from the Fe-N structure prevalent on the carbon nanosheets and large mesopore-dominated specific surface area, the synthesized catalyst under optimized conditions shows excellent electrocatalytic performance for ORR with an EORR at 1.08 V versus reversible hydrogen electrode (RHE) and an E1/2 at 0.87 V vs. RHE, and outstanding long-term stability, which is superior to commercial Pt/C catalysts (EORR at 1.04 V versus RHE and E1/2 at 0.84 V versus RHE). Moreover, the low hydrogen peroxide yield (<11%) and average electron transfer number (~3.8) indicate a four-electron ORR pathway. Besides, the maximum power density of the home-made Zn-air battery using the obtained catalyst is 97.6 mW cm−2. This work provides a practical route for the synthesis of cheap and efficient ORR electrocatalysts in metal-air battery systems.  相似文献   
76.
《Ceramics International》2022,48(16):23051-23060
To obtain both plasticity and toughness of the material at the same time, various manufacturing techniques of ceramic-metal composites and structures have been studied. In this work, a bio-inspired Al2O3 ceramic scaffold with Gyroid structure was designed and prepared by stereolithographic (SL) additive manufacturing, then the Al2O3/Al ceramic-metal hybrid structure was prepared by infiltrating molten Al into the Al2O3 ceramic structure. The performances of the Al2O3 ceramic scaffold and the Al2O3/Al ceramic-metal hybrid structure were compared and analyzed by a quasi-static compression experiment. The quasi-static compressive strength of the pristine Al2O3 scaffold was 14.36 MPa, while that of the Al2O3/Al ceramic-metal hybrid structure was up to 89.06 MPa. Moreover, the plasticity of the Al2O3/Al ceramic-metal hybrid structure was much higher than that of the Al2O3 scaffold. During compression, the Al2O3/Al ceramic-metal hybrid structure had excellent energy absorption, reaching up to 2569.16 KJ/m³, 15 times that of the Al2O3 scaffold. Therefore, this method can obtain materials with excellent ductility and toughness.  相似文献   
77.
《Ceramics International》2022,48(8):10480-10485
Advanced nano-porous super thermal insulation materials are widely used in spacecraft, soler-thermal shielding, heat exchangers, photocatalytic carriers due to their low thermal conductivity. In this work, adopting dry preparation technology, nano-Al2O3, nano-SiO2, SiC and glass fibers as raw materials, novel nanometer alumina-silica insulation board (NAIB) were prepared. The preparation process was simple, safe, and reliable. In addition, the NAIB exhibited a high porosity (91.3–92.3%), small pore size (39.83–44.15 nm), low bulk density (0.22–0.26 g/cm3), better volumetric stability, and low thermal conductivity (0.031–0.050 W/(m·K) (200–800 °C)), respectively. The as-prepared NAIB could render them suitable for application as high-temperature thermal insulation materials.  相似文献   
78.
Graphite–SiC micro-composites have been prepared in–house by carbothermal reduction process. Controlling the process parameters including the weight ratio of SiO2 to graphite as well as carbothermal reduction temperature during the micro-composite preparation favors the homogeneous formation of SiC with preferred morphologies like ribbons and whiskers/fibers. The micro-composite modified low carbon MgO-C refractories have exhibited significantly improved bulk properties over the standard composition. To understand the beneficial role of SiC reinforcement on hot strength performance under air oxidizing conditions, we propose a scaling parameter known as strength factor (fs) based on the ratio of hot strength (HMOR) to cold strength (CCS). Correlating the strength factor data (fs) with oxidative damage provides new insights into the reinforcing effects of distinct SiC morphologies in this new class of micro-composite fortified refractory systems over the standard compositions.  相似文献   
79.
《Ceramics International》2022,48(12):17104-17115
This study reports on the early hydration properties and microstructure evolutions of MgO-activated slag at five curing temperatures (20 °C, 40 °C, 50 °C, 60 °C, and 80 °C) and three MgO types (S-MgO, M ? MgO, and R-MgO). The results indicated that high-temperature curing substantially increased the compressive strength of the specimens. Particularly, the highest strength was obtained at 40 °C and 60 °C for the S-MgO and M-MgO-activated slag specimens, respectively, and the high curing temperature for the R-MgO-activated slag specimen was 40 °C. We focused on the relationship between the mechanical properties, pore structure characteristics, and hydration products. The combination of calcium-silicate-hydrate (C-S-H) gel and Al increased under high-temperature curing conditions. XRD, FT-IR, TG-DTG, and 27Al MAS-NMR results showed a high Al content in the formation of calcium silicate hydrate with Al in its structure (C-A-S-H gel) for the R-MgO-activated slag pastes under high-temperature curing; however, the microstructure was loose owing to the formation of excessive brucite. For the S-MgO-activated slag specimen, the Ca/Si ratio was high, with more Mg2+ penetrating the C-S-H gel interlayer, forming more hydrotalcite-like phases and increasing the chain length of the C-S-H gel. The microstructure showed good compatibility of the hydration products interweaving to form dense microstructures.  相似文献   
80.
《Ceramics International》2022,48(1):446-454
Readily oxidization of magnetic particles is a common drawback of these type of materials which reduce their electromagnetic wave dissipation performance. In this study, the magnetic core-double shells structured (Ni/SiO2/Polyaniline) composite has been developed for protection of the core from oxidation and in consequent improvement the complex permittivity. Solvothermal and in-situ polymerization methods were utilized for decorating Ni micro-particles with SiO2 and conductive polyaniline polymer respectively. All physico-chemical, magnetic and electromagnetic features were evaluated via XRD, FTIR, XPS, FESEM, VSM and VNA analysis. The double shells composite possesses significant performance in terms of reflection loss and effective absorption bandwidth. The results reveal that the maximum dissipation capacity of the double shells composite is – 32.5 dB at 16.5 GHz with 4.5 GHz effective absorption bandwidth and 1.5 mm thickness. Enhancement in microwave dissipation features are arises from synergistic influence of various phenomena such as interfacial polarization, multiple Debye relaxation, natural ferromagnetic resonance and proper impedance matching characteristic. Overall, developing double shells structure on magnetic Ni microsphere particles had a meaningful effect on tuning the microwave absorption performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号